# Motivic Thom Spectrum and Algebraic Cobordism

David Zhu

August 7, 2025

### Table of Contents

Introduction

2 Motivic Thom Spectrum

Cobordism

### Table of Contents

Introduction

2 Motivic Thom Spectrum

Cobordism

## Review

## Thom Space

For a vector bundle  $\xi: E \to B$ , the associated **Thom Space**  $Th(\xi)$  is the homotopy pushout

$$\begin{array}{ccc}
E - B & \longrightarrow & E \\
\downarrow & & \downarrow \\
* & \longrightarrow & Th(\xi)
\end{array}$$

If the bundle is equipped with a metric, the Thom space can be computed via:

$$\begin{array}{ccc}
S(E) & \longrightarrow & D(E) \\
\downarrow & & \downarrow \\
* & \longrightarrow & D(E)/S(E) \cong Th(\xi)
\end{array}$$

# Thom Isomoprhism

## Theorem (Thom Isomorphism)

Let  $\xi: E \to B$  be an oriented real vector bundle of rank n. Then, there exists a **Thom Class** 

$$c \in H^n(E, E_0; \mathbb{Z}) \cong \tilde{H}^n(Th(\xi); \mathbb{Z})$$

that restricts to the orientation cohomology class on each fiber. Moreover, there is an isomorphism

$$H^k(E;\mathbb{Z}) \to \tilde{H}^{k+n}(Th(\xi);\mathbb{Z})$$

for all  $k \ge 0$  given by cupping with the Thom class.

# Thom Spectra

#### Proposition

For vector bundles  $\eta_1: E_1 \to B_1$  and  $\eta_2: E_2 \to B_2$ , we have

$$Th(\eta_1 \times \eta_2) \cong Th(\eta_1) \wedge Th(\eta_2)$$

Taking one bundle to be the trivial bundle over a point, we have

## Corollary

Let  $\xi$  be the rank 1 trivial real bundle over base B. If E is some other vector bundle over B, then

$$Th(\xi^n \oplus E) \cong S^n \wedge Th(E)$$

For any vector bundle, the above equivalences gives us structure maps of the **Thom Spectra** associated to the vector bundle.



# Universal Thom Space

We specialize to the complex case:

#### **Fact**

The universal rank n complex bundle is the tautological bundle

$$\gamma_n \to \operatorname{Gr}(n,\infty) = BU(n)$$

The bundle  $\gamma_{n+1} \to BU(n+1)$  pulls back to  $1 \oplus \gamma_n$  over BU(n). Thomifying gives us structure maps

$$\Sigma^2 Th(\gamma_n) \to Th(\gamma_{n+1})$$

and the Thom spaces organize into the complex Thom spectrum

$$MU_{2n} := Th(\gamma_n)$$



# Complex-Oriented Cohomology Theories

Given a (ring) spectrum E, we will use  $E^*$  to denote the (multiplicative) cohomology theory it represents.

#### **Definition**

A multiplicative cohomology theory E is **complex-orientable** if the homomorphism induced by inclusion

$$E^2(\mathbb{CP}^{\infty}) \to E^2(\mathbb{CP}^1)$$

is surjective.

The surjectivity condition is equivalent to a class  $c_1^E \in \tilde{E}^2(\mathbb{CP}^\infty)$  such that under the map

$$i^*: ilde{E}^2(\mathbb{CP}^\infty) o ilde{E}^2(S^2) \cong \pi_0(E)$$

 $i^*c_1^E$  is the generator for  $\pi_0(E)$ . We call the class  $c_1^E$  a **complex orientation** of E.



# **Examples**

## Example

Ordinary cohomology,  $H\mathbb{Z}$ , is complex-orientable:  $H^2(\mathbb{CP}^\infty; \mathbb{Z}) \to H^2(\mathbb{CP}^1; \mathbb{Z})$  is an isomorphism.

# Example

Complex K-theory, KU, is complex-orientable: the class  $\gamma_1-1$  in  $\tilde{KU}^2(\mathbb{CP}^\infty)\cong \tilde{KU}^0(\mathbb{CP}^\infty)$  is a complex orientation since it restricts to the Bott element.

### Non-example

Real K-theory is not complex-orientable since

$$\mathbb{Z}\cong ilde{\mathcal{KO}}(\mathbb{CP}^\infty) o ilde{\mathcal{KO}}(\mathbb{CP}^1)\cong \mathbb{Z}$$

is multiplication by 2.

# Some Computations

Through Atiyah-Hirzebruch spectral sequence, it is easy to compute a complex-orientable cohomology theory for  $\mathbb{CP}^n$ : the surjectivity criterion forces the spectral sequence to degenrate at  $E^2$ , and we have

#### Lemma

We have the isomorphisms

$$E^*(\mathbb{CP}^\infty) \cong (\pi_* E)[[t]]$$

$$E^*(\mathbb{CP}^\infty \times \mathbb{CP}^\infty) \cong (\pi_* E)[[x, y]]$$

and the generator t is a complex orientation.

### Example

For  $E = H\mathbb{Z}$ ,

$$H^*(\mathbb{CP}^{\infty}) = \mathbb{Z}[[c_1]]$$

, where  $c_1$  is the first Chern class of the tautological line bundle.

### Chern Class

One can think the orientation  $c_1^E$  as a generalized first Chern class of the tautological bundle over BU(1). Recall that For  $E=H\mathbb{Z}$ , the Chern class provides a group isomorphism from the Picard group to  $H^2$  of the base:

$$c_1(L_1 \otimes L_2) = c_1(L_1) + c_1(L_2)$$

But for generalized Chern classes, this is no longer true.

# Some Computations

The homotopy associative and commutative multiplication

$$m: \mathbb{CP}^{\infty} \times \mathbb{CP}^{\infty} \to \mathbb{CP}^{\infty}$$

classifies tensor product of line bundles. and there is an induced map

$$\mathit{m}^*:(\pi_*E)[[t]]\cong E^*(\mathbb{CP}^\infty)\to E^*(\mathbb{CP}^\infty\times\mathbb{CP}^\infty)\cong (\pi_*E)[[x,y]]$$

so  $m^*t=c_1^{\it E}(\gamma_1\otimes\gamma_1)$  will be a formal power series of two variables over  $\pi_*({\it E})$ 

### Example

For E=KU, let  $\gamma_1$  denote the universal bundle over BU(1), then generating the cohomology class  $t\in (\pi_*(KU))[[t]]$  represents the virtual bundle  $\gamma_1-1$ . Thus, we have

$$m^*(1+t) = (1+x)(1+y) = 1+x+y+xy$$

# Formal Group Law

#### **Definition**

A (commutative, one-dimensional) **formal group law** over a (graded) commutative ring R is an element  $\overline{f(x,y)} \in R[[x,y]]$  that satisfies the following:

- f(x,0) = f(0,x) = x
- **2** f(x,y) = f(y,x)
- **3** f(x, f(y, z)) = f(f(x, y), z)

The three conditions correspond to identity, commutativity and associativity of a group operation. The existence of unique inverse can be deduced from condition 1 and 3.

# Formal Group Law From Orientation

### Proposition

The class  $m^*t \in (\pi_*E)[[x,y]]$  is a formal group law over  $\pi_*(E)$ .

## Example

The formal group law from the canonical orientation of  $H\mathbb{Z}$  is the additive formal group law

$$f(x,y) = x + y$$

as Chern class is a group homomorphism.

## Example

The formal group law from the canonical orientation of KU is the multiplicative formal group law

$$f(x,y) = x + y + xy$$



# Representability

It is easy to see that taking the set of formal group laws over a commutative ring is a covariant functor

$$FGL: \mathbf{CRing} \to \mathbf{Set}$$

### Proposition

The functor FGL is represented by a commutative ring L.

We could directly construct the ring L such that there is a bijection

$$\operatorname{Hom}(L,R)\cong FGL(R)$$

We will call the universal ring L the **Lazard ring**.

### Lazard's Theorem

The existence of the universal ring L is trivial: one forms a big enough polynomial ring over  $\mathbb{Z}$  and quotient out by the generating relations specified by the axioms. But explictly computing L is the following theorem:

# Theorem (Lazard's Theorem)

he Lazard ring L is isomorphic to a graded polynomial ring

$$L\cong \mathbb{Z}[c_1,c_2,....]$$

# Universality of MU

The canonical equivalence

$$\mathbb{CP}^{\infty} \to MU(1)$$

equips MU with a orientation.

#### Theorem

MU is the universal complex oriented cohomology theory: every such spectrum E is equipped with a morphism of ring spectrum

$$MU \rightarrow E$$

that takes the canonical orientation of MU to that of E.

# Quillen's Theorem

Quillen established the connection between the universal formal group law and the unversal complex oriented cohomology theory.

## Theorem (Quillen)

The ring morphism  $L \to \pi_*(MU)$  is an isomorphism of graded rings that classifies the canonical formal group law on MU.

### Table of Contents

Introduction

2 Motivic Thom Spectrum

3 Cobordism

# Assumptions

The standing assumption is that we will work with motivic spaces/spectra over a field k, with char(k) = 0. Some results will be true for positive characteristics as well, as well as over general k-schemes.

# $\mathbb{P}^1$ -Spectra

Let  $\mathbb{P}^1$  be the motivic space pointed at  $\infty$ .

### **Definition**

A  $\mathbb{P}^1$ -spectrum E is a sequence of pointed motivic spaces  $\{E_n : n \in \mathbb{N}\}$  with structure maps

$$\sigma_n: \mathbb{P}^1 \wedge E_n \to E_{n+1}$$

A morphism is a sequence of maps of pointed spaces compatible with structure maps.

## Example

Any pointed motivic space X gives rise to a  $\mathbb{P}^1$  suspension spectrum, denoted by  $\Sigma^{\infty}_{\mathbb{P}^1}X$ .

### Intuition

#### Theorem

There is a model structure on the category of  $\mathbb{P}^1$ -spectrum that presents the stable  $\infty$ -category SH(k).

The reason it is preferred in todays discussion is:

- Periodicity
- 2 Topological realization
- **3** Jardine's symmetric  $\mathbb{P}^1$ -spectra.

# Motivic Thom Spectrum

#### **Definition**

The **motivic Thom space** of a vector bundle  $\eta: E \to B$  is the homotopy  $(\infty)$ -pushout

$$\begin{array}{ccc}
E - B & \longrightarrow & E \\
\downarrow & & \downarrow \\
* & \longrightarrow & Th(\eta)
\end{array}$$

## Example

Consider the trivial rank 1 bundle  $\xi: X \times \mathbb{A}^1 \to X$ . We have computed that

$$Th(\xi) = \mathbb{A}^1/\mathbb{A}^1 - \{0\} \cong \mathbb{P}^1 \cong S^1_s \wedge S^1_t$$

# **Properties**

#### **Proposition**

Let  $\eta_1: E_1 \to B_1$  and  $\eta_2: E_2 \to B_2$  be vector bundles. For motivic Thom spaces, the product formula

$$Th(\eta_1 \times \eta_2) \cong Th(\eta_1) \wedge Th(\eta_2)$$

still holds.

To see this, it suffices to note that

$$E_1 \times E_2 - (B_1 \times B_2)$$

has  $(E_1 - B_1) \times E_2 \coprod E_1 \times (E_2 - B_2)$  as a Zariski open cover.



# Motivic Thom Spectrum

Recall that in algebraic geometric/motivic setting, we still have the tautological bundle

$$\gamma_{n,m} \to \operatorname{Gr}_n(\mathbb{A}^{n+m})$$

And we can still take colimits and define

$$MGL_n := \operatorname{colim}_m Th(\operatorname{Gr}_n(\mathbb{A}^{n+m}))$$

Let  $i_n: \operatorname{Gr}_n(\mathbb{A}^{m+n}) \to \operatorname{Gr}_{n+1}(\mathbb{A}^{m+n+1})$  be the canonical inclusion. It still holds that

$$i_n^* \gamma_{n+1,m+1} \cong \xi \oplus \gamma_{n,m}$$

which produces structure maps

$$\sigma_n: \mathbb{P}^1 \wedge MGL_n \rightarrow MGL_{n+1}$$

after passing to the colimit.



# Motivic Thom Spectrum

## Definition

The Motivic Thom Spectrum **MGL** is  $\mathbb{P}^1$ -spectrum given by  $\{MGL_n, \sigma_i | i \in \mathbb{N}\}$ 

# Ring Spectra

#### **Definition**

A **motivic ring spectrum** is a monoid in homomtopy category SH(k).

This is the ring spectrum in the weak sense, but that is all we need.

#### Remark

(Commutative) Monoids in Jardine's symmetric  $\mathbb{P}^1$ -spectra or in the  $\infty$ -category  $\mathrm{SH}(k)$  will be  $(E_\infty)$   $A_\infty$ -rings.

## Monoid structures

# Theorem ([6], Section 2.1)

The (symmetric)  $\mathbb{P}^1$  spectrum MGL is a motivic ring spectrum.

The monoidal structure is induced by the closed embedding of Grassmannians

$$\operatorname{Gr}_n(\mathbb{A}^{mn}) \times \operatorname{Gr}_p(\mathbb{A}^{mp}) \to \operatorname{Gr}_{n+p}(\mathbb{A}^{m(n+p)})$$

by sending a two linear subspaces to their product. The assoicated bundle map induces a map of Thom spaces compatible with colimit.

# Oriented Motivic Spectra

#### **Definition**

A motivic ring spectrum E is **oriented** if there is a class  $c_E \in E^{2,1}(\mathbb{P}^{\infty})$  that restricts to the generator in  $E^{2,1}(\mathbb{P}^1)$  under the map

$$i^*: E^{2,1}(\mathbb{P}^\infty) \to E^{2,1}(\mathbb{P}^1)$$

### Orientation of $H\mathbb{Z}$

Let  $H\mathbb{Z}$  be the motivic spectrum that represents motivic cohomogy.

# Theorem (MVW [3], Corollary 4.2)

Let X be a smooth scheme over k. Then,

$$H^{2,1}(X,\mathbb{Z})\cong Pic(X)$$

Given a vector bundle  $L \to X$ , we can define  $c_1(L) \in H^{2,1}(X;\mathbb{Z})$  to be the cohomology class that corresponds to the class  $L \in \operatorname{Pic}(X)$ . The universal class will be our orientation, and this gives rise to the additive formal group law.

## Orientation of MGL

#### Lemma

The zero section

$$s: BGL_1 = \mathbb{P}^{\infty} \to MGL(1)$$

is a motivic equivalence.

We consider the closed immersion

$$i_n: \mathbb{P}^{n-1} \to \mathbb{P}^n$$

The normal bundle of the immersion is the canonical line bundle  $\mathcal{O}_{\mathbb{P}^{n-1}}(-1)$ . The Purity isomorphism gives us

$$\mathbb{P}^n \cong rac{\mathbb{P}^n}{\mathbb{P}^n - \mathbb{P}^{n-1}} \cong \mathit{Th}(\mathcal{O}_{\mathbb{P}^{n-1}}(-1))$$

Taking the colimit of both sides finishes.



## Orientation of MGL

# Corollary

The composition

$$\Sigma^{\infty}\mathbb{P}^{\infty}\to \Sigma^{\infty} \textit{MGL}(1)\to \Sigma^{\infty}\mathbb{P}^1 \land \textit{MGL}$$

defines the canonical orietation in  $MGL^{2,1}(\mathbb{P}^{\infty})$ .

# Projective Bundle Theorem

In order to compute the cohomology of Grassmannians, one needs the following:

## Theorem (Projective Bundle Theorem)

Let X be a smooth variety and  $V \to X$  a rank n vector bundle. For an oriented motivic cohomology theory E, we have

$$E^{*,*}(\mathbb{P}(V))c \cong E^{*,*}(X)[\epsilon]/\epsilon^n$$

where  $\epsilon = c_1(\mathcal{O}_V(-1))$ .

# Computations

#### Theorem

Let E be an oriented motivic ring spectrum. Then,

$$E^{*,*}(Gr_n) = E^{*,*}[[c_1, c_2, ...., c_n]]$$

is the formal power series ring generated by the Chern classes.

For a proof, see [7] Theorem 2.0.7. The idea is one computes the E cohomology of flag varieties using the projective bundle formula, and then establish the isomorphism with E cohomology of  $Gr_n$ .

# Motivic Thom Isomorphism

# Theorem (Vezzosi [9], Theorem 3.8)

Let E be an oriented motivic ring spectrum, and  $\xi:\epsilon\to X$  be a vector bundle of rank r. Then, there is a motivic Thom isomorphism

$$\Phi: E^{*,*}(X) \to E^{*+2r,*+r}(Th(\xi))$$

The proof breaks down to first defining the Thom class using the given orientation. Then, it utilizes the well-known equivalence

$$\mathbb{P}(\xi \oplus 1)/\mathbb{P}(\xi) \cong Th(\xi)$$

and its associated long exact sequence, together with the projective bundle formula to deduce the isomorphism.

# Computations

The following is a direct corollary of Thom isomorphism

# Corollary

Let  ${\it E}$  be an oriented motivic ring spectrum. Then, there is a canonical Thom isomorphism

$$E^{*,*}(BGL) \rightarrow E^{*,*}(MGL)$$

The only fact we have to use is

#### Lemma

For any  $\mathbb{P}^1$  spectrum E, there is a canonical identification

$$\varinjlim \Sigma_{\mathbb{P}^1}^{\infty-i} E_i \cong E$$

Given another spectrum F, there is a Milnor exact sequence

$$0 \longrightarrow \lim^{1} F^{p+2i-1,q+1}(E_{i}) \longrightarrow F^{p,q}(E) \longrightarrow \lim^{p+2i,q+i}(E_{i}) \longrightarrow$$

# Universality

# Theorem ([7])

MGL is the universal oriented motivic cohomology theory in the sense that

$$\{\mathit{orientations}\ \mathit{of}\ E\} = [\mathit{MGL}, E]_{\mathit{ring}}$$

The proof mostly follows in the same vein as in the classical case: one first shows that given a monoid map  $MGL \to E$ , the image of the canonical orientation of MGL is an orientation for E; conversely, an orientation of E produces uniquely an element in  $E^{0,0}(MGL)$ , and one shows that it is indeed a monoid map.

## Motivic Quillen's Theorem

From the computation  $E^{*,*}(\mathbb{P}^{\infty}) = E^{*,*}[[c_1]]$ , it is clear that oriented motivic cohomology gives rise to formal group laws in the same way as in the classical case.

## Theorem (Hoyois, Hopkins-Morel [1])

Let k be a field of characteristic exponent c. Then, there is a canonical equivalence of spectra

$$MGL/(c_1, c_2, ....)[\frac{1}{c}] \cong H\mathbb{Z}[\frac{1}{c}]$$

We outline the proof given in [1]. For simplicity, assume char(k) = 0, and let  $f: MGL/(c_1, c_2, ....) \to H\mathbb{Z}$  be the map we want to show to be an equivalence.

• show after smashing with  $H\mathbb{Q}$ , f becomes an equivalence. This uses results from motivic analogue of Landweber exactness proved in [5].

- **1** show after smashing with  $H\mathbb{Q}$ , f becomes an equivalence. This uses results from motivic analogue of Landweber exactness proved in [5].
- ② show after smashing with  $H\mathbb{Z}/I$ , f becomes an equivalence. For this, one computes the homotopy groups via Voevodsky's work on motivic cohomology.

- **1** show after smashing with  $H\mathbb{Q}$ , f becomes an equivalence. This uses results from motivic analogue of Landweber exactness proved in [5].
- ② show after smashing with  $H\mathbb{Z}/I$ , f becomes an equivalence. For this, one computes the homotopy groups via Voevodsky's work on motivic cohomology.
- **3** step 1 and 2 together implies  $H\mathbb{Z} \wedge f$  is an equivalence.

- **9** show after smashing with  $H\mathbb{Q}$ , f becomes an equivalence. This uses results from motivic analogue of Landweber exactness proved in [5].
- ② show after smashing with  $H\mathbb{Z}/I$ , f becomes an equivalence. For this, one computes the homotopy groups via Voevodsky's work on motivic cohomology.
- **3** step 1 and 2 together implies  $H\mathbb{Z} \wedge f$  is an equivalence.
- **1** The final step is to show MGL is  $H\mathbb{Z}$ -local. This utilizes Morel's **homotopy t-structure** on SH(k).

- **9** show after smashing with  $H\mathbb{Q}$ , f becomes an equivalence. This uses results from motivic analogue of Landweber exactness proved in [5].
- ② show after smashing with  $H\mathbb{Z}/I$ , f becomes an equivalence. For this, one computes the homotopy groups via Voevodsky's work on motivic cohomology.
- **3** step 1 and 2 together implies  $H\mathbb{Z} \wedge f$  is an equivalence.
- **1** The final step is to show MGL is  $H\mathbb{Z}$ -local. This utilizes Morel's **homotopy t-structure** on SH(k).

# Complex Cobordism

The homology theory  $MU_*$  is understood geometrically (or rather invented by) by Thom: it is the bordism ring  $\Omega_*$  of complex manifolds.

A geometric interpretation of the cohomology theory  $MU^*$  is given later by Quillen in [8]:

## Theorem (Quillen [8])

For a smooth manifold X, the group  $MU^q(X)$  is isomorphic to the group of proper **complex oriented maps** into X, denoted by  $\Omega^q$ .

Moreover, Quillen defined a more geometric notion of complex oriented cohomology theory: it would be a contravariant functor on the category of smooth manifolds, with proper complex oriented maps induceing Gysin homomorphisms.

## Theorem (Quillen [8], Proposition 1.10)

Let h be a complex oriented cohomology theory. Given an element  $a \in h(pt)$ , there is a unique morphism

$$\Omega^* \rightarrow h$$

of functors commuting with the Gysin homomorphism that sends  $1 \in \Omega^*$  to a.

#### Characteristic Class

The geometric definition still let us define Chern classes, and we can check that the product formula for line bundles will still give rise to formal group laws.

### Table of Contents

Introduction

2 Motivic Thom Spectrum

3 Cobordism

# Algebraic Cobordism

Following Quillen, Levine and Morel constructed the algebro-geometric analogue of oriented cohomology theories on the category of smooth *k*-schemes and algebraic cobordism in [4].

## Definition (Rough)

An **oriented cohomology theory** on  $Sm_k$  is an additive functor

$$A^*: Sm_k^{op} \rightarrow CoGrR$$

such that for each projective morphism  $f:Y\to X$  of relative codimension d, there is a Gysin homomorphism

$$f_*: A^*(Y) \to A^{*+d}(X)$$

that satisfies certain composition laws. Moreover, one has a good definition of projective bundle formula and Chern classes.

# Universal Algebraic Cobordism

#### Theorem

Morel-Levine Assume k has characteristic zero. Then there exists a universal oriented cohomology theory on  $Sm_k$ , denoted by  $\Omega^*$ .

By the existence of Chern classes, these cohomology theories also produce formal group laws.

Levine also proved the comparison theorem:

### Theorem (Morel-Levine)

There is a canonical isomorphism of graded rings:

$$L \rightarrow \Omega^*(Spec(k))$$

### Theorem (Morel-Levine)

Given an embedding  $t: k \to \mathbb{C}$ , there is a realization functor that induces isomorphism

$$\Omega^*(Speck) o MU^{2*}(pt)$$

## Theorem (Levine [2])

There is a canonical isomorphism of graded rings

$$\Omega^*(X) \to MGL^{2*,*}(X)$$

for all  $X \in Sm_k$ .

## **Examples**

#### Example

The Chow ring functor  $\operatorname{CH}$  is an oriented cohomology theory, and it gives rise to the additive formal group law.

### Example

The grothendieck group functor  $K^0$  is an oriented cohomology theory. It gives rise to the multiplicative formal group law.

### References I



From algebraic cobordism to motivic cohomology.

Journal für die reine und angewandte Mathematik (Crelles Journal), 2015(702):173–226, June 2013.

Marc Levine.

Comparison of cobordism theories.

Journal of Algebra, 322(9):3291-3317, 2009.

Carlo Mazza, Vladimir Voevodsky, and Charles Weibel.

Lecture Notes on Motivic Cohomology, volume 1968 of Lecture Notes in Mathematics.

Springer-Verlag, Berlin, 2006.

Fabien Morel and Marc Levine.

Algebraic Cobordism.

Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2007.

### References II



I. Panin, K. Pimenov, and O. Röndigs.

A universality theorem for voevodsky's algebraic cobordism spectrum, 2007.

l. Panin, K. Pimenov, and O. Röndigs.

A universality theorem for voevodsky's algebraic cobordism spectrum, 2007.

D. Quillen.

Elementary proofs of some results of cobordism theory using steenrod operations.

Advances in Mathematics., 7:29–56, 1971.

Gabriele Vezzosi.

Brown-peterson spectra in stable  $a^1$ -homotopy theory, 2000.