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Review

Thom Space

For a vector bundle ξ : E → B, the associated Thom Space Th(ξ) is the
homotopy pushout

E − B E

∗ Th(ξ)

If the bundle is equipped with a metric, the Thom space can be computed
via:

S(E ) D(E )

∗ D(E )/S(E ) ∼= Th(ξ)
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Thom Isomoprhism

Theorem (Thom Isomorphism)

Let ξ : E → B be an oriented real vector bundle of rank n. Then, there
exists a Thom Class

c ∈ Hn(E ,E0;Z) ∼= H̃n(Th(ξ);Z)

that restricts to the orientation cohomology class on each fiber. Moreover,
there is an isomorphism

Hk(E ;Z) → H̃k+n(Th(ξ);Z)

for all k ≥ 0 given by cupping with the Thom class.
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Thom Spectra

Proposition

For vector bundles η1 : E1 → B1 and η2 : E2 → B2, we have

Th(η1 × η2) ∼= Th(η1) ∧ Th(η2)

Taking one bundle to be the trivial bundle over a point, we have

Corollary

Let ξ be the rank 1 trivial real bundle over base B. If E is some other
vector bundle over B, then

Th(ξn ⊕ E ) ∼= Sn ∧ Th(E )

For any vector bundle, the above equivalences gives us structure maps of
the Thom Spectra associated to the vector bundle.
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Universal Thom Space

We specialize to the complex case:

Fact

The universal rank n complex bundle is the tautological bundle

γn → Gr(n,∞) = BU(n)

The bundle γn+1 → BU(n + 1) pulls back to 1⊕ γn over BU(n).
Thomifying gives us structure maps

Σ2Th(γn) → Th(γn+1)

and the Thom spaces organize into the complex Thom spectrum

MU2n := Th(γn)
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Complex-Oriented Cohomology Theories

Given a (ring) spectrum E , we will use E ∗ to denote the (multiplicative)
cohomology theory it represents.

Definition

A multiplicative cohomology theory E is complex-orientable if the
homomorphism induced by inclusion

E 2(CP∞) → E 2(CP1)

is surjective.

The surjectivity condition is equivalent to a class cE1 ∈ Ẽ 2(CP∞) such that
under the map

i∗ : Ẽ 2(CP∞) → Ẽ 2(S2) ∼= π0(E )

i∗cE1 is the generator for π0(E ). We call the class cE1 a
complex orientation of E .
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Examples

Example

Ordinary cohomology, HZ, is complex-orientable:
H2(CP∞;Z) → H2(CP1;Z) is an isomorphism.

Example

Complex K -theory, KU, is complex-orientable: the class γ1 − 1 in

K̃U
2
(CP∞) ∼= K̃U

0
(CP∞) is a complex orientation since it restricts to the

Bott element.

Non-example

Real K -theory is not complex-orientable since

Z ∼= K̃O(CP∞) → K̃O(CP1) ∼= Z

is multiplication by 2.
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Some Computations

Through Atiyah-Hirzebruch spectral sequence, it is easy to compute a
complex-orientable cohomology theory for CPn: the surjectivity criterion
forces the spectral sequence to degenrate at E 2, and we have

Lemma

We have the isomorphisms

E ∗(CP∞) ∼= (π∗E )[[t]]

E ∗(CP∞ × CP∞) ∼= (π∗E )[[x , y ]]

and the generator t is a complex orientation.

Example

For E = HZ,
H∗(CP∞) = Z[[c1]]

, where c1 is the first Chern class of the tautological line bundle.
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Chern Class

One can think the orientation cE1 as a generalized first Chern class of the
tautological bundle over BU(1). Recall that For E = HZ, the Chern class
provides a group isomorphism from the Picard group to H2 of the base:

c1(L1 ⊗ L2) = c1(L1) + c1(L2)

But for generalized Chern classes, this is no longer true.
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Some Computations

The homotopy associative and commutative multiplication

m : CP∞ × CP∞ → CP∞

classifies tensor product of line bundles. and there is an induced map

m∗ : (π∗E )[[t]] ∼= E ∗(CP∞) → E ∗(CP∞ × CP∞) ∼= (π∗E )[[x , y ]]

so m∗t = cE1 (γ1 ⊗ γ1) will be a formal power series of two variables over
π∗(E )

Example

For E = KU, let γ1 denote the universal bundle over BU(1), then
generating the cohomology class t ∈ (π∗(KU))[[t]] represents the virtual
bundle γ1 − 1. Thus, we have

m∗(1 + t) = (1 + x)(1 + y) = 1 + x + y + xy
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Formal Group Law

Definition

A (commutative, one-dimensional) formal group law over a (graded)
commutative ring R is an element f (x , y) ∈ R[[x , y ]] that satisfies the
following:

1 f (x , 0) = f (0, x) = x

2 f (x , y) = f (y , x)

3 f (x , f (y , z)) = f (f (x , y), z)

The three conditions correspond to identity, commutativity and
associativity of a group operation. The existence of unique inverse can be
deduced from condition 1 and 3.
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Formal Group Law From Orientation

Proposition

The class m∗t ∈ (π∗E )[[x , y ]] is a formal group law over π∗(E ).

Example

The formal group law from the canonical orientation of HZ is the additive
formal group law

f (x , y) = x + y

as Chern class is a group homomorphism.

Example

The formal group law from the canonical orientation of KU is the
multiplicative formal group law

f (x , y) = x + y + xy
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Representability

It is easy to see that taking the set of formal group laws over a
commutative ring is a covariant functor

FGL : CRing → Set

Proposition

The functor FGL is represented by a commutative ring L.

We could directly construct the ring L such that there is a bijection

Hom(L,R) ∼= FGL(R)

We will call the universal ring L the Lazard ring.
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Lazard’s Theorem

The existence of the universal ring L is trivial: one forms a big enough
polynomial ring over Z and quotient out by the generating relations
specified by the axioms. But explictly computing L is the following
theorem:

Theorem (Lazard’s Theorem)

he Lazard ring L is isomorphic to a graded polynomial ring

L ∼= Z[c1, c2, ....]
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Universality of MU

The canonical equivalence

CP∞ → MU(1)

equips MU with a orientation.

Theorem

MU is the universal complex oriented cohomology theory: every such
spectrum E is equipped with a morphism of ring spectrum

MU → E

that takes the canonical orientation of MU to that of E .
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Quillen’s Theorem

Quillen established the connection between the universal formal group law
and the unversal complex oriented cohomology theory.

Theorem (Quillen)

The ring morphism L → π∗(MU) is an isomorphism of graded rings that
classifies the canonical formal group law on MU.
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Assumptions

The standing assumption is that we will work with motivic spaces/spectra
over a field k, with char(k) = 0. Some results will be true for positive
characteristics as well, as well as over general k-schemes.
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P1-Spectra

Let P1 be the motivic space pointed at ∞.

Definition

A P1-spectrum E is a sequence of pointed motivic spaces {En : n ∈ N}
with structure maps

σn : P1 ∧ En → En+1

A morphism is a sequence of maps of pointed spaces compatible with
structure maps.

Example

Any pointed motivic space X gives rise to a P1 suspension spectrum,
denoted by Σ∞

P1X .
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Intuition

Theorem

There is a model structure on the category of P1-spectrum that presents
the stable ∞-category SH(k).

The reason it is preferred in todays discussion is:

1 Periodicity

2 Topological realization

3 Jardine’s symmetric P1-spectra.
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Motivic Thom Spectrum

Definition

The motivic Thom space of a vector bundle η : E → B is the homotopy
(∞)-pushout

E − B E

∗ Th(η)

Example

Consider the trivial rank 1 bundle ξ : X × A1 → X . We have computed
that

Th(ξ) = A1/A1 − {0} ∼= P1 ∼= S1
s ∧ S1

t
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Properties

Proposition

Let η1 : E1 → B1 and η2 : E2 → B2 be vector bundles. For motivic Thom
spaces, the product formula

Th(η1 × η2) ∼= Th(η1) ∧ Th(η2)

still holds.

To see this, it suffices to note that

E1 × E2 − (B1 × B2)

has (E1 − B1)× E2
∐

E1 × (E2 − B2) as a Zariski open cover.

David Zhu Motivic Thom Spectrum and Algebraic Cobordism August 7, 2025 24 / 49



Motivic Thom Spectrum

Recall that in algebraic geometric/motivic setting, we still have the
tautological bundle

γn,m → Grn(An+m)

And we can still take colimits and define

MGLn := colimmTh(Grn(An+m))

Let in : Grn(Am+n) → Grn+1(Am+n+1) be the canonical inclusion. It still
holds that

i∗nγn+1,m+1
∼= ξ ⊕ γn,m

which produces structure maps

σn : P1 ∧MGLn → MGLn+1

after passing to the colimit.
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Motivic Thom Spectrum

Definition

The Motivic Thom Spectrum MGL is P1-spectrum given by
{MGLn, σi |i ∈ N}
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Ring Spectra

Definition

A motivic ring spectrum is a monoid in homomtopy category SH(k).

This is the ring spectrum in the weak sense, but that is all we need.

Remark

(Commutative) Monoids in Jardine’s symmetric P1-spectra or in the
∞-category SH(k) will be (E∞) A∞-rings.
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Monoid structures

Theorem ([6], Section 2.1)

The (symmetric) P1 spectrum MGL is a motivic ring spectrum.

The monoidal structure is induced by the closed embedding of
Grassmannians

Grn(Amn)×Grp(Amp) → Grn+p(Am(n+p))

by sending a two linear subspaces to their product. The assoicated bundle
map induces a map of Thom spaces compatible with colimit.
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Oriented Motivic Spectra

Definition

A motivic ring spectrum E is oriented if there is a class cE ∈ E 2,1(P∞)
that restricts to the generator in E 2,1(P1) under the map

i∗ : E 2,1(P∞) → E 2,1(P1)

David Zhu Motivic Thom Spectrum and Algebraic Cobordism August 7, 2025 29 / 49



Orientation of HZ

Let HZ be the motivic spectrum that represents motivic cohomogy.

Theorem (MVW [3], Corollary 4.2)

Let X be a smooth scheme over k. Then,

H2,1(X ,Z) ∼= Pic(X )

Given a vector bundle L → X , we can define c1(L) ∈ H2,1(X ;Z) to be the
cohomology class that corresponds to the class L ∈ Pic(X ). The universal
class will be our orientation, and this gives rise to the additive formal
group law.
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Orientation of MGL

Lemma

The zero section
s : BGL1 = P∞ → MGL(1)

is a motivic equivalence.

We consider the closed immersion

in : Pn−1 → Pn

The normal bundle of the immersion is the canonical line bundle
OPn−1(−1). The Purity isomorphism gives us

Pn ∼=
Pn

Pn − Pn−1
∼= Th(OPn−1(−1))

Taking the colimit of both sides finishes.
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Orientation of MGL

Corollary

The composition

Σ∞P∞ → Σ∞MGL(1) → Σ∞P1 ∧MGL

defines the canonical orietation in MGL2,1(P∞).
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Projective Bundle Theorem

In order to compute the cohomology of Grassmannians, one needs the
following:

Theorem (Projective Bundle Theorem)

Let X be a smooth variety and V → X a rank n vector bundle. For an
oriented motivic cohomology theory E , we have

E ∗,∗(P(V ))c ∼= E ∗,∗(X )[ϵ]/ϵn

where ϵ = c1(OV (−1)).
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Computations

Theorem

Let E be an oriented motivic ring spectrum. Then,

E ∗,∗(Grn) = E ∗,∗[[c1, c2, ...., cn]]

is the formal power series ring generated by the Chern classes.

For a proof, see [7] Theorem 2.0.7. The idea is one computes the E
cohomology of flag varieties using the projective bundle formula, and then
establish the isomorphism with E cohomology of Grn.
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Motivic Thom Isomorphism

Theorem (Vezzosi [9], Theorem 3.8)

Let E be an oriented motivic ring spectrum, and ξ : ϵ → X be a vector
bundle of rank r . Then, there is a motivic Thom isomorphism

Φ : E ∗,∗(X ) → E ∗+2r ,∗+r (Th(ξ))

The proof breaks down to first defining the Thom class using the given
orientation. Then, it utilizes the well-known equivalence

P(ξ ⊕ 1)/P(ξ) ∼= Th(ξ)

and its associated long exact sequence, together with the projective bundle
formula to deduce the isomorphism.
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Computations

The following is a direct corollary of Thom isomorphism

Corollary

Let E be an oriented motivic ring spectrum. Then, there is a canonical
Thom isomorphism

E ∗,∗(BGL) → E ∗,∗(MGL)

The only fact we have to use is

Lemma

For any P1 spectrum E , there is a canonical identification

lim−→Σ∞−i
P1 Ei

∼= E

Given another spectrum F , there is a Milnor exact sequence

0 lim1 F p+2i−1,q+1(Ei ) F p,q(E ) limp+2i ,q+i (Ei ) 0
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Universality

Theorem ([7])

MGL is the universal oriented motivic cohomology theory in the sense that

{orientations of E} = [MGL,E ]ring

The proof mostly follows in the same vein as in the classical case: one first
shows that given a monoid map MGL → E , the image of the canonical
orientation of MGL is an orientation for E ; conversely, an orientation of E
produces uniquely an element in E 0,0(MGL), and one shows that it is
indeed a monoid map.
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Motivic Quillen’s Theorem

From the computation E ∗,∗(P∞) = E ∗,∗[[c1]], it is clear that oriented
motivic cohomology gives rise to formal group laws in the same way as in
the classical case.

Theorem (Hoyois, Hopkins-Morel [1])

Let k be a field of characteristic exponent c . Then, there is a canonical
equivalence of spectra

MGL/(c1, c2, ....)[
1

c
] ∼= HZ[

1

c
]
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Outline of Proof

We outline the proof given in [1]. For simplicity, assume char(k) = 0, and
let f : MGL/(c1, c2, ....) → HZ be the map we want to show to be an
equivalence.

1 show after smashing with HQ, f becomes an equivalence. This uses
results from motivic analogue of Landweber exactness proved in [5].

2 show after smashing with HZ/l , f becomes an equivalence. For this,
one computes the homotopy groups via Voevodsky’s work on motivic
cohomology.

3 step 1 and 2 together implies HZ ∧ f is an equivalence.

4 The final step is to show MGL is HZ-local. This utilizes Morel’s
homotopy t-structure on SH(k).
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Complex Cobordism

The homology theory MU∗ is understood geometrically (or rather invented
by) by Thom: it is the bordism ring Ω∗ of complex manifolds.

A geometric interpretation of the cohomology theory MU∗ is given later by
Quillen in [8]:

Theorem (Quillen [8])

For a smooth manifold X , the group MUq(X ) is isomorphic to the group
of proper complex oriented maps into X , denoted by Ωq.
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Moreover, Quillen defined a more geometric notion of complex oriented
cohomology theory: it would be a contravariant functor on the category of
smooth manifolds, with proper complex oriented maps induceing Gysin
homomorphisms.

Theorem (Quillen [8], Proposition 1.10)

Let h be a complex oriented cohomology theory. Given an element
a ∈ h(pt), there is a unique morphism

Ω∗ → h

of functors commuting with the Gysin homomorphism that sends 1 ∈ Ω∗

to a.
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Characteristic Class

The geometric definition still let us define Chern classes, and we can check
that the product formula for line bundles will still give rise to formal group
laws.
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Algebraic Cobordism

Following Quillen, Levine and Morel constructed the algebro-geometric
analogue of oriented cohomology theories on the category of smooth
k-schemes and algebraic cobordism in [4].

Definition (Rough)

An oriented cohomology theory on Smk is an additive functor

A∗ : Smop
k → CoGrR

such that for each projective morphism f : Y → X of relative codimension
d , there is a Gysin homomorphism

f∗ : A
∗(Y ) → A∗+d(X )

that satisfies certain composition laws. Moreover, one has a good
definition of projective bundle formula and Chern classes.
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Universal Algebraic Cobordism

Theorem

Morel-Levine Assume k has characteristic zero. Then there exists a
universal oriented cohomology theory on Smk , denoted by Ω∗.

By the existence of Chern classes, these cohomology theories also produce
formal group laws.
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Levine also proved the comparison theorem:

Theorem (Morel-Levine)

There is a canonical isomorphism of graded rings:

L → Ω∗(Spec(k))

Theorem (Morel-Levine)

Given an embedding t : k → C, there is a realization functor that induces
isomorphism

Ω∗(Speck) → MU2∗(pt)

Theorem (Levine [2])

There is a canonical isomorphism of graded rings

Ω∗(X ) → MGL2∗,∗(X )

for all X ∈ Smk .
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Examples

Example

The Chow ring functor CH is an oriented cohomology theory, and it gives
rise to the additive formal group law.

Example

The grothendieck group functor K 0 is an oriented cohomology theory. It
gives rise to the multiplicative formal group law.
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